

Project Lead

Project Partners Utility Partners

Operational Probabilistic Tools for Solar Uncertainty (OPTSUN)

SETO Workshop on Solar Forecasting May 5, 2021

Principal Investigator: Aidan Tuohy, EPRI

Other Contributors: Miguel Ortega Vazquez, Nikita Singhal, Majid Heidarifar, Qin Wang, David Larson, Erik Ela, and Mobolaji Bello (EPRI); Dan Kirk-Davidoff (UL), Ranga Pitchumani (VT), Russ Philbrick (Polaris Systems Optimization - PSO)

EPRI OPTSUN Project – Three Workstreams

- Forecasting: develop and deliver probabilistic forecasts with targeted improvements
- Design: identify advanced methods for managing uncertainty based on results from advanced scheduling tools
- Demonstration: develop and demonstrate a scheduling management platform (SMP) to integrate probabilistic forecasts and scheduling decisions in a modular and customizable manner

Use of Probabilistic Forecasts in Operations

Use #1: Dynamic Reserve Requirements

 Set operating reserves based on probabilistic forecasts – different methods can be used

Use #2: Scenario Generation for UC

 Transform probabilistic info into scenarios, which can be used in a UC model to allow for stochastic UC

Probabilistic Scenarios to Reserve Requirements

From scenarios to reserve requirements

Probabilistic Scenarios to Reserve Requirements

From scenarios to reserve requirements

Utility Operational Simulations

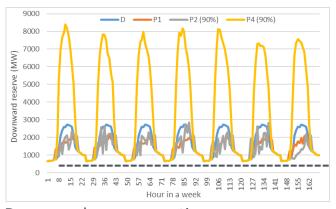
Note: FESTIV tool used for Hawaiian Electric

^{*}SCUC is run at 7AM on the current operating day due to less stressed conditions from midnight – 7am (ISOs/RTOs typically run their DAM at 11AM on the previous operating day or midnight), and run to end of 7 days out

Preliminary Observations – Duke and Southern

- S: static
- D: deterministi
- PX: probabilistic (methods 1-4)
- 4) R: risk-based
- H: hybrid

- Hybrid methods outperform other methods in terms of savings and cost reductions
- Impact on system operation Duke:
 - Upward reserve price is zero in most intervals indicating that there is more than enough inherent reserve in the system
 - Large amounts of flexible resources (CT and PSH) provide upward reserve at zero price (~98.6%)
 - Small cost difference between the cases
- Impact on system operations Southern:
 - Reduced startups (1.5% 3%)
 - Function of system fleet and operating thresholds (e.g., load, VRES, etc.)
 - Comparable overall operating costs w.r.t. base case, but lower risk
 - Reduced number of reserve violations



Example results – more to come!

Upward reserves

Downward	reserves	options
DOWITWATA	I COCI VCO	Options

	Case	Total Production Cost (\$)	Startup Cost (\$)
Dynan	nic Deterministic	79.04 M	624.7 k
Prob.	P1	78.84 M (↓0.25%)	612.0 k (↓2%)
	P2 (90%)	78.77 M (↓0.33%)	567.0 k (↓11%)
	P4 (90%)	80.80 M (↑2.23%)	1330.0 k (↑113%)

- Some potential benefit from the methods, also expect risk can be addressed more efficiently
- Hybrid methods combining best of different options are being investigated

Software Tool to Support Integration with Operations

Currently working with participating utilities to refine the platform

- Reserve requirements for different risk preferences and methods
- Scenario generation for UC
- Link to unit commitment/economic dispatch
- Visualize and assess forecasts and reserves

Overall Conclusions and Final Steps in Project

- Probabilistic forecasts are being delivered to multiple utilities/ISOs
 - Improved underlying methods, tuned to utility needs
 - Continuing to evaluate and will use Solar Forecast Arbiter in summer
- Methods to use forecasts being investigated for a few regions
 - Hybrid methods are more likely to show value
 - Identifying conditions when benefits are greatest and develop guidelines
 - Examine use directly in scheduling
- Online tool to ingest, analyze and evaluate forecasts
 - Provide means to employ the methods developed
 - Open-source tool coming at end of year

Questions?

Project Lead

Project Partners Utility Partners

Probabilistic Solar Forecast Improvements

- Focusing on horizons relevant to operations (~1-hour to 1-week ahead)
- Machine Learning based approach using gradient-boosted decision tree methods
- Methodology resulted in improved reliability of probabilistic forecasts compared with quantile regression

Identifying periods to study in more detail

Representative Days

Figure showing Days into four clusters with percentage of membership

Extreme Days

Figure showing Extreme days with respect to a desired feature

